Vedic Math - Fourth Power of 2 Digit Numbers

Note: Vedic Math Blog has been moved to Please bookmark the new address for new and existing blogs.

We discussed the cube of 2-digit number in previous article. In this article, we shall describe the fourth power of 2-digit numbers using the same formula.

The Algebraic Expression of (a + b)4

 (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

 We can rewrite the above equation as:
           a4       a3b          a2b2           ab3        b4
                   3a3b        5a2b2          3ab3
So, apply the same rule which we applied in previous article, while finding cubic of the number. Consider the first term as a4 and the remaining terms get multiplied by b/a with the previous term.
The Difference comes in second row, in fourth power, we multiply 2nd and 4th term by 3 and 3rd term by 5.

Example: 114

            1    1    1    1    1
                 3    5    3
            1    4    6    4    1

Example: 324
            81     54      36     24     16
                   162    180     72
          104      8       5        7       6

The "Binomial Theorem" is thus capable of practical application more comprehensively in Vedic Math. Here it is been utilised for splendid purpose as described above, with Vedic Sutras.

If you like the article, you may contribute by:

  • Posting your comments which will add value to the article contents
  • Posting the article link on Social Media using the Social Media Bookmark bar
  • Connecting with 'VedantaTree' on Facebook (